An Ore-type Theorem for Perfect Packings in Graphs

نویسندگان

  • Daniela Kühn
  • Deryk Osthus
  • Andrew Treglown
چکیده

We say that a graph G has a perfect H-packing (also called an H-factor) if there exists a set of disjoint copies of H in G which together cover all the vertices of G. Given a graph H , we determine, asymptotically, the Ore-type degree condition which ensures that a graph G has a perfect H-packing. More precisely, let δOre(H,n) be the smallest number k such that every graph G whose order n is divisible by |H | and with d(x)+ d(y) ≥ k for all non-adjacent x 6= y ∈ V (G) contains a perfect H-packing. We determine limn→∞ δOre(H,n)/n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Regularity Lemma and applications to packings in graphs

In this thesis we investigate applications of Szemerédi’s Regularity Lemma [20]. This result was originally formulated to solve number-theoretical problems. However, we consider its applications in graph theory, in particular to packing results. We begin by introducing some of the basic notions that are needed to understand and use the Regularity Lemma. From this we give an outline of some tool...

متن کامل

Unmixed $r$-partite graphs

‎Unmixed bipartite graphs have been characterized by Ravindra and‎ ‎Villarreal independently‎. ‎Our aim in this paper is to‎ ‎characterize unmixed $r$-partite graphs under a certain condition‎, ‎which is a generalization of Villarreal's theorem on bipartite‎ ‎graphs‎. ‎Also, we give some examples and counterexamples in relevance to this subject‎.

متن کامل

On graphs satisfying a local ore-type condition

For an integer i, a graph is called an Li-graph if, for each triple of vertices u, v, w with d(u, v) = 2 and w ∈ N(u) ∩N(v), d(u) + d(v) ≥ |N(u) ∪N(v) ∪N(w)| − i. Asratian and Khachatrian proved that connected L0-graphs of order at least 3 are hamiltonian, thus improving Ore’s Theorem. All K1,3-free graphs are L1-graphs, whence recognizing hamiltonian L1-graphs is an NP-complete problem. The fo...

متن کامل

Weighted degrees and heavy cycles in weighted graphs

A weighted graph is a graph provided with an edge-weighting function w from the edge set to nonnegative real numbers. Bondy and Fan [Annals of Discrete Math. 41 (1989), 53– 69] began the study on the existence of heavy cycles in weighted graphs. Though several results with Dirac-type degree condition can be generalized to Ore-type one in unweighted graphs, it is shown in [Bondy et al., Discuss....

متن کامل

-factors in graphs

Given two graphs H and G, an H-packing in G is a collection of vertex-disjoint copies of H in G. An H-packing in G is called perfect if it covers all vertices of G. In this case, we also say that G contains an H-factor. The aim now is to find natural conditions on G which guarantee the existence of a perfect H-packing inG. For example, the famous theorem of Hajnal and Szemerédi [HS70] gives a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009